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The β-relaxation dynamics of a simple liquid
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Abstract. We present a detailed analysis of the β-relaxation dynamics of a simple glass former, a binary
Lennard-Jones system with a stochastic dynamics. By testing the various predictions of mode-coupling the-
ory, including the recently proposed corrections to the asymptotic scaling laws, we come to the conclusion
that in this time regime the dynamics is described very well by this theory.

PACS. 61.20.Lc Time-dependent properties; relaxation – 61.20.Ja Computer simulation of liquid structure
– 02.70.Ns Molecular dynamics and particle methods

1 Introduction

In the last few years it has been demonstrated that mode-
coupling theory (MCT) [1] is able to describe many as-
pects of the relaxation dynamics of supercooled liquids.
In particular the theory is able to explain on a quali-
tative level, and for certain systems even on a quanti-
tative one, phenomena like the non-Debye behavior of
the α-relaxation process, the wave-vector dependence of
the Lamb-Mössbauer and Debye-Waller factors, and why
quantities like the viscosity or the α-relaxation times show
an anomalously strong temperature dependence of their
activation energy in the vicinity of Tc, the so-called criti-
cal temperature in the theory.

Apart from the existence of Tc, the most important
predictions of MCT deal with the so-called β-relaxation
process which is proposed to exist in the supercooled
regime on the time scale between the microscopic relax-
ation at short times and the α-relaxation at long times.
The β-regime is readily seen if a time correlation func-
tion φ(t), such as the intermediate scattering function, is
plotted versus the logarithm of time. In the supercooled
regime φ(t) will show at intermediate times a plateau, and
the relaxation dynamics of the system on the time scale
at which φ(t) is close to this plateau is the β-regime. The
reason for the existence of this plateau is that on this
time scale the particles are trapped in the cages formed
by their surrounding neighbors. Hence the predictions of
the theory regarding the β-regime deal with the details of
the dynamics of the particles in these cages. Some of these
predictions have already been confirmed by various exper-
iments on colloidal suspensions and molecular liquids [2].

In the past it has been shown that apart from ex-
periments also computer simulations are a very useful
tool to probe the dynamics of supercooled liquids [3]. Be-
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cause simulations allow the investigations of observables
which in real experiments are hard to measure, as e.g.
the dynamics at large wave-vectors or cross-correlation
functions, they permit to make more stringent tests of
theoretical concepts and thus are a valuable addition to
experiments. Results of such tests have, e.g., been done
for soft sphere systems [4], Lennard-Jones models [5], wa-
ter [6], and polymers [7]. The result of these tests was
that the theory is indeed able to give a good description
of the relaxation dynamics of these systems. What these
simulations have, however, not been able to address so
far are several important predictions, discussed below, of
MCT about the relaxation dynamics in the β-regime. The
main reason why these predictions have not been tested
was that they are supposed to be valid only very close
to the critical temperature Tc of MCT, and that close to
Tc the relaxation times of the system are usually so large
that it is very hard to equilibrate the system within the
time span accessible to a computer simulation (but easily
reachable in a real experiment). If the predictions of the
theory are tested at slightly higher temperatures, where
the system can be equilibrated even in a computer simula-
tion, the strong interference of the microscopic dynamics
of the system with the β-relaxation process will spoil the
analysis, because of the lack of separation of time scales,
and stringent tests will almost be impossible. In order to
overcome these problems we have recently investigated the
relaxation dynamics of a Lennard-Jones system in which
the particles move according to a stochastic dynamics [8].
This dynamics leads to a strong damping of the micro-
scopic dynamics and hence it becomes finally possible to
test the predictions of MCT about the β-regime and in
this paper we report the outcome of these tests.

The model we investigate is a 80:20 mixture of
Lennard-Jones particles with mass m. In the follow-
ing we will call the two species of particles A and B.
The interaction between two particles of type α and β,



84 The European Physical Journal B

with α, β ∈ {A,B}, is given by Vαβ(r) = 4εαβ[(σαβ/r)12−
(σαβ/r)6] with εAA = 1.0, σAA = 1.0, εAB = 1.5, σAB =
0.8, εBB = 0.5, and σBB = 0.88, and a cut-off radius of
2.5σαβ. In the following we will always use reduced units
with σAA and εAA the unit of length and energy, respec-
tively (setting the Boltzmann constant kB equal to 1.0).
Time is measured in units of

√
σ2

AAm/48εAA. The volume
of the simulation box is kept constant with a box length of
9.4. The dynamics of the system is given by the stochastic
equations of motion

mr̈j +∇j
∑
l

Vαjβl(|rl − rj |) = −ζṙj + ηj(t). (1)

Here ηj(t) is a Gaussian distributed white noise force with
zero mean. Because of the fluctuation dissipation theorem,
the magnitude of ηj(t) is related to ζ by 〈ηj(t) · ηl(t′)〉 =
6kBTζδ(t− t′)δjl. We have used a value of ζ = 10, which
is so large that the presented results for the dynamics do
not depend on ζ anymore (apart from a trivial change of
the time scale). Equations (1) were solved with a Heun
algorithm with a time step of 0.008. The temperatures in-
vestigated were 5.0, 4.0, 3.0, 2.0, 1.0, 0.8, 0.6, 0.55, 0.5,
0.475, 0.466, 0.452, and 0.446. At the lowest temperature
the length of the run was 4× 107 time steps. This length
is not sufficiently long to equilibrate the sample. There-
fore we equilibrated the system by means of a Newtonian
dynamics for which we have found that the equilibration
times are significantly shorter [8]. Thus all the correla-
tion functions shown in the present work are equilibrium
curves, even if they do not decay to zero at long times. In
order to improve the statistics of the results we averaged
at each temperature over eight independent runs.

In the following we will review some of the predic-
tions of MCT about the dynamics in the β-regime and
will denote by φl(t) an arbitrary time correlation function
which couples to density fluctuations. (Here the index l
is just used to distinguish between different correlators.)
As stated here, the predictions are valid only for temper-
atures slightly above the critical temperature Tc of MCT.
More general results can be found in references [1,9].

MCT predicts that in the β-region any correlation
function φl(t) can be written as

φl(t) = f c
l + hlcσg−(t/tσ), (2)

where the temperature independent constants f c
l and hl

are called critical nonergodicity parameter and critical
amplitude, respectively. The quantity cσ is given by

cσ =
√
|σ| with σ = C(Tc − T ), (3)

where C is a constant. The function g− is independent
of φl and depends only on the so-called “exponent pa-
rameter” λ which can be calculated from the structure
factor [1]. This calculation has been done for the present
system and a value of λ = 0.708 was found [10]. Hence in
our case λ is not a fit parameter. Once λ is known, the
function g− can be calculated numerically.
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Fig. 1. Time dependence of Fs(q, t) for the A particles at
q = 7.2 (symbols) and the fitted β-correlators (solid curves)
for all T ≤ 0.8.

The quantity tσ in equation (2) is the time scale of the
β-relaxation and is given by

tσ = t0/|σ|1/2a, (4)

where t0 is a system universal constant, and the ex-
ponent a can be calculated from λ and is in our case
a = 0.324 [10]. Hence, according to MCT, in equation (2)
only the time scale tσ and the prefactor hlcσ depend on
temperature.

MCT also predicts that τl(T ), the time scale of the
α-relaxation, depends on temperature like

τl = Γlτ, τ = t0/|σ|γ , with γ = 1/2a+ 1/2b (5)

where Γl is independent of temperature and the exponent
b can also be calculated from λ [1] and is for our system
b = 0.627 [10]. Thus we have γ = 2.34.

Having presented some of the predictions of MCT
about the β-relaxation we can now check how well they
agree with reality. For this we calculated from the simu-
lation Fαβ(q, t) and Fαs (q, t), the coherent and incoher-
ent scattering functions for wave-vector q, respectively.
These time correlation functions were then fitted in the β-
relaxation regime with the functional form given by equa-
tion (2), where f c

l , hlcσ, and tσ were fit parameters. This
fit was first done for the lowest temperature (T = 0.446).
For the fits at the higher temperatures the value of f c

l was
kept fixed to the one of T = 0.446 in order to avoid that
the fits give some effective time scales tσ and prefactors
hlcσ. In Figure 1 we show the results of such fits and it
can be seen that the range over which the β-correlator de-
scribes the data increases with decreasing temperature, as
predicted by MCT. (Note that in order to obtain reliable
values of the fit parameters f c

l it was necessary to include
also the next order correction to g−(t/tσ) which is of the
form of (t/τl)(2b) [1,6]. These corrections give rise to the
slight upward bending of the fits at long times.).

From equations (3, 4) it follows that according to MCT
a plot of t−2a

σ versus temperature should give a straight
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Fig. 2. Check of the validity of equation (4) for various corre-
lators (see labels of curves). MCT predicts a straight line which
intercept the T−axis at Tc = 0.435. The bold straight line is a
linear fit to the open circles.

line and that this line should be independent of the cor-
relator φl. In Figure 2 we show such a plot where we have
used for φl the functions Fαs (q, t) for the A and B particles
and the function FAA(q, t), for two wave-vectors: q = 7.20
and q = 9.61, which correspond to the location of the max-
imum and first minimum in the structure factor for the
A-A correlation [5]. From this plot we see that at low tem-
peratures the different curves are indeed close to straight
lines and collapse quite well onto a master curve. Hence
we conclude that these two predictions of MCT work well
for our system. Also included in the figure is a linear fit
to the data for FA

s (q, t) for q = 7.2. This fit intercepts the
temperature axis at T ≈ 0.432, which according to MCT
should be Tc. This estimate of the critical temperature is
in excellent agreement with the one of reference [5], where
Tc = 0.435 was found.

We also mention that we have found that the square
of the prefactor in equation (2), hlcσ, shows a linear de-
pendence on T , (hlcσ)2 = |σ|, and vanishes at Tc, which
follows from equations (2, 3) and is hence in agreement
with MCT. The test of equation (3) is equivalent to the
test of the relation between hlcσ and tσ, which according
to the theory, equations (2, 3, 4), should be

hlcσ ∝ t−aσ . (6)

In Figure 3 we plot hlcσ versus 1/tσ in a double logarith-
mic plot for the same correlators discussed in Figure 2.
We see that the different curves can be approximated rea-
sonably well by straight lines with a slope a (bold solid
line in the figure). Therefore we conclude that also this
prediction of the theory seems to work satisfactorily well.

From equations (4, 5) it follows that also the α-
relaxation time τl should show a power-law dependence
on tσ, i.e.

τl ∝ Γlt1+a/b
σ . (7)

Thus this equation expresses the surprising prediction
of MCT that two diverging time scales exist in supercooled
liquids, namely τl and tσ. Whether this is indeed the case
is tested in Figure 4 where we plot τ−1

l versus t−1
σ for the
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Fig. 4. Check of the validity of equation (7) for various cor-
relators. The prediction of MCT is a straight line with slope
1 + a/b (bold straight line).

usual correlators in a double logarithmic plot. We see that
the different curves are indeed close to straight lines and
that the slope is very close to the theoretical value, bold
straight line. Thus we confirm also this prediction of the
theory.

As already mentioned above in the context of equa-
tion (2), according to MCT the whole time dependence of
φl(t) is given by the l−independent function g−(t/tσ). In
order to test this prediction we can introduce a function
Rl(t) as follows:

Rl(t) =
φl(t)− φl(t′)
φl(t′′)− φl(t′)

· (8)

Here t′ and t′′ are arbitrary times in the β-relaxation
regime (t′ 6= t′′). From equation (2) it follows immediately
that in the β-regime the function Rl(t) is independent of
the correlator, i.e. of l. To see whether this is indeed the
case we have considered the correlation function discussed
in the context of Figure 2 and in addition the coherent and
incoherent scattering function for several other wave vec-
tors and also the cross correlation function FAB(q, t) at
different q. This gave us a total of 36 correlation func-
tions which are shown in the upper inset of Figure 5 (at
T = 0.446). For each of these functions we determined the
corresponding Rl(t), choosing for t′ and t′′ a value around
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Fig. 5. Main figure: Time dependence of the ratio given in
equation (8), demonstrating the validity of the factorization
property (Eq. (2)). T = 0.446. The correlation functions φl(t)
are shown in the upper right inset. See text for the discussion
of the lower left inset and the two vertical lines in the main
figure.

200 and 15 000, respectively. In the main figure of Figure 5
we show the different Rl(t) and we see that in the β-regime
they do indeed collapse onto a master curve. That such a
collapse is not a trivial result can be concluded from the
observation that outside the β-regime the different curves
show a strong dependence on l, at short as well as at long
times.

Equation (2) is the prediction of the theory about the
leading asymptotic behavior for the time and temperature
dependence of a generic correlator. Very recently the next
order corrections to this behavior have been calculated [11]
and these corrections can now be used to do more checks
on the validity of the theory. In reference [11] it has been
shown that in the early β-relaxation regime, i.e. for t0 �
t� tσ, the correlator can be written as

φl(t) = f c
l + hl(t0/t)a

{
1 + [Kl +∆](t0/t)a

}
. (9)

Here ∆ is a l−independent constant and the constant Kl

depends on l but not on temperature. In the late β-regime,
for which tσ � t � τl, the correlation function is pre-
dicted to behave like

φl(t) = f c
l − hl(t/τ)b

{
1−Kl(t/τ)b

}
. (10)

The mentioned corrections are the second terms in the
curly brackets in equations (9, 10). The important result
about these equations is that the l dependent part of the
correction, i.e. Kl, is the same. Using this fact it is simple
to show the following: Calculate the ratioRl(t) from equa-
tion (8) for various correlators and plot these Rl(t) versus
the logarithm of t. Draw two vertical lines at times that
are a bit shorter and a bit longer than the times where the
asymptotic expression, equation (2), holds. Start to label
the correlators from top to bottom in the order they inter-
sect the vertical line at short times and call this number
i. Determine the position j at which curve i intersects the
vertical line at large times, where the counting is again
done from top to bottom. Thus this gives a function j(i).
From equations (9, 10) it then follows that j = i. Or to

put this in other words: the first (second, . . . ) curve that
intersects the left vertical line is also the first (second, . . . )
curve to intersect the right vertical line.

We have done the described procedure by using ver-
tical lines at t = 3 and t = 105 (bold vertical lines in
Fig. 5). The function j(i) we find is shown in the lower in-
set of Figure 5. We see that, despite the scattering present
in the data, a clear increasing trend which is compatible
with a straight line with unit slope can be seen, thus giv-
ing also support for the validity of this prediction of the
theory.

We thus can conclude from the present work that many
of the predictions that mode-coupling theory makes for the
β-relaxation can also be tested in computer simulations.
As we have shown in this paper the outcome of such tests
for the Lennard-Jones system considered here is that the
theory is indeed able to give a self consistent picture of the
dynamics of this simple glass-former in the β-relaxation
regime.

We thank W. Götze and A. Latz for valuable discussions and
comments on a draft of this paper. Part of this work was sup-
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